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A B S T R A C T

The purpose of this work is to investigate the cyclic plasticity and creep-cyclic plasticity behaviours of particle
reinforced titanium matrix composites (PRTMCs) SiC/Ti-6242, aimed to be used in high temperature applica-
tions. The investigation has been conducted upon microstructures that have been taken from a previous study
where low-fidelity model-based optimization (LFMBO) has been used to maximise the elastic behaviour of
particle reinforced aluminium matrix composites. The effect of the particle spatial distribution, particle fraction
volume and number of particles on the shakedown limit, limit load and creep-cyclic plasticity have been ex-
plored by direct numerical techniques based on the Linear Matching Method (LMM) framework. The micro-
mechanical approach to modelling and fifteen multi-particle unit cells have been investigated. Under cyclic
loading conditions, the structural response of PRTMCs is not trivial and becomes even more significant when
high temperature is involved. Hence, the factors that affect the creep and cyclic plasticity of PRTMCs are ana-
lysed and discussed, including effects of the applied load level, dwell period and temperature on the composites’
performance. The applicability and accuracy of the proposed direct method has also been verified by the step-by-
step analysis.

1. Introduction

In the search of developing materials which are stronger, stiffer,
lighter and capable of use at high temperature, over the past 50 years
researchers have conducted an investigation on an extensive range of
reinforcement/matrix combinations in metal matrix composites
(MMCs). For both family of MMCs, i.e. continuous fibre reinforced
MMCs (CFMMCs) and discontinuous MMCs (DMMCs) a wide spectrum
of matrix materials (including aluminium (Al), magnesium (Mg),
copper (Cu), titanium (Ti) and steel (Fe) among others), and ceramic
reinforcements (including borides, carbides, nitrides, oxides and their
mixtures) have undergone fast development [1]. Titanium matrix
composites (TMCs) reinforced with silicon carbide (SiC) continuous
fibres have a great potential to exploit in the aerospace industry. These
composites are stronger, more creep and fatigue resistant and have a
lower weight to stiffness ratio than conventional metal alloys [2].
However complex damage and failure behaviours along with

prohibitive manufacturing costs and high anisotropic properties are still
the main factors that limit their use to highly specialised applications.
DMMCs are likely to find high volume of commercial application due to
their low cost, ease of fabrication and improved properties. Indeed, by
combining metallic properties such as excellent ductility, toughness,
formability and good thermal and electric conductivities, with ceramic
characteristics, e.g., high hardness, strength, modulus, high-tempera-
ture durability and low thermal expansion, the structure is expected to
exhibit a higher specific strength, specific stiffness, wear resistance,
thermal stability and high-temperature durability compared to the
corresponding monolithic matrix materials [3–6]. These superiorities
make them potential candidates in the same way as CFMMCs for critical
applications in the aerospace and automotive industries. Typical uses of
discontinuous or particle titanium composites include creep resistant
engineering components, wear parts such as gears, bearings, shafts and
erosion-corrosion resistant tubing [7].

Despite highlighted properties and advantages exhibited by particle
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reinforced titanium matrix composites (PRTMCs), many complex pro-
blems that affect the overall mechanical properties and the integrity of
the final composite structures still exist. On the one hand, it is necessary
to understand the factors that influence the physical and mechanical
properties of the composites since they are sensitive to the type of re-
inforcement, method of manufacture and processing/heat treatment
used [8]. On the other hand there is need to carry out an extensive
research aimed at providing a better understanding of the cyclic plastic
behaviour of TMCs involving creep effects under cyclic thermo-me-
chanical loading. Indeed, in the presence of creep, structural response
changes substantially under cyclic loading so that lifetime of compo-
nents can be reduced dramatically.

The representative failure mechanisms associated with the sy-
nergistic creep-fatigue interaction are crack initiations due to “low
cycle fatigue” (LCF) and “creep ratchetting”. LCF induces finite lifetime
of components due to high stress levels and a low number of cycles to
failure. Common factors that have been attributed to creep ratchetting
are “cyclic enhanced creep” and “creep enhanced plasticity” [9,10]. On
the one hand, creep deformation is generally enhanced by cyclic
loading especially for longer dwell period. Stress–strain interaction
often reports non-closed hysteresis loop due to the enhancement in
creep strains, where it is referred to cyclic enhanced creep. On the other
hand, if significant stress relaxation occurs within small creep de-
formation, it can also lead to the creep ratchetting due to large un-
loading plasticity, where it is referred to the creep enhanced plasticity.
To ensure structural integrity, the assessment procedure R5 also re-
commends to evaluate lifetime of a high temperature component
against following mechanisms: plastic collapse failure, creep rupture
failure, ratchetting collapse, crack initiation due to creep-fatigue in-
teraction, and excessive cyclic enhanced creep deformation [9]. To
satisfy the design requirements, the cyclic plasticity analysis and the
cyclic creep and plastic analysis have to be carried out independently. If
an applied cyclic loading level is under either strict or global shake-
down limit without creep, no ratchetting mechanism appears in the
steady state response [11]. However, with creep, for the same loading
level applied, ratchetting response can take place due to either cycli-
cally enhanced creep or creep enhanced plasticity depending on pri-
mary load level, known as rupture reference stress, or duration of dwell
period [12–14].

In light of the above considerations this work is focused on the in-
vestigation of the both cyclic plasticity and creep-cyclic plasticity be-
haviours of the PRTMCs by means of a direct numerical method and
three dimensional multi-particles unit cells [15–17]. In Section 2, a
brief overview of the numerical procedures adopted for this work is
provided. Section 3 shows the microstructure generation of the multi-
particle unit cells along with the boundary conditions applied for the
numerical investigation. Section 4 presents both numerical results and
discussions. Shakedown limit boundaries for different particle ar-
rangements, number of particles, and particle fractions volume are re-
ported along with variations of the two main critical design limits i.e.
shakedown limit and limit load (Section 4.1). In Section 4.2, the creep-
cyclic plasticity behaviours of the PRTMCs are presented by hysteresis
stress-strain loops constructed in the steady state cycle. The effect of the
key parameters affecting the cyclic plasticity and creep-cyclic plasticity
behaviour of the PRTMCs is also discussed in 4.1 and 4.2. Conclusions
and remarks are made in Section 5.

2. Direct methods employed for the cyclic plastic and cyclic creep
and plastic analysis

To obtain a shakedown limit boundary of the SiC/Ti-6242 PRTMCs
subjected to a cyclic thermal load with a constant mechanical load, a
numerical direct method called the Linear Matching Method (LMM) is
adopted. The LMM matches non-linear material response to a linear

material behaviour using iterative computational processes by changing
the elastic modulus at each integration point of a finite element (FE)
model [18]. For the shakedown limit analysis, the LMM computes both
upper bound and lower bound limit multipliers under cyclic loadings,
creating a load envelope to show a limit of structural responses as Bree
like diagram. The LMM was used to analyse the cyclic plasticity of the
fibre-reinforced composite materials [19,20]. The LMM was extended
to the Direct Steady Cycle Analysis (LMM DSCA) [21] that calculates
the stabilized response of a structure subjected to cyclic loadings with
accuracy and efficiency that supersedes other traditional direct
methods [22].

The LMM DSCA method was further extended by Chen et al. [23] to
evaluate a structural response to creep-cyclic plasticity behaviour in the
steady state. The extended Direct Steady Cycle Analysis method
(eDSCA) has been actively being utilised to assess the low cycle fatigue,
and the creep-fatigue damages [24,25]. A flowchart of the LMM eDSCA
procedures is attached in the appendix. Validity and applicability of the
LMM framework have been also acknowledged by a variety of com-
mercial industry partners [25–27], in particular the LMM DSCA method
has been selected by R5 research programme of EDF energy to the
commercial standard [9]. In particular for the composite materials, the
eDSCA was employed to analyse the cyclic creep and plastic behaviours
[28–30]. Based on the reliability, the LMM eDSCA method is adopted
for the numerical analysis in the present work. Brief introductions to
the numerical procedures of the adopted methods are made in the
following subsection.

2.1. Numerical procedures for shakedown limit analysis

It is assumed that a structure follows elastic perfectly plastic model
(EPP) with a volume V and a surface area of S as well as satisfying the
von-Mises yield condition. The structure is subjected to the cyclic
thermal load t( ) acting across the V and the steady mechanical load

P t( ) imposing on a part of the surface ST over time period t t0 ,
where λ denotes load parameters. A remaining surface SR ( =S S SR T)
is constrained by no displacement rate ( =U 0). Upon the loading and
boundary conditions, a linear elastic stress solution can be expressed by
Eq. (1)

= +t t t( ) ( ) ( )ij
e

ij ij
P (1)

where ij and ij
P denote changing elastic stresses corresponding to

t( ) and P t( ), respectively.
For the cyclic problem, a general form of the elastic solution can be

expressed by Eq. (2) with three different components; the elastic stress
t( )ij

e , the constant residual stress īj, and the varying residual stress
t( )ij

r .

= + +t t t( ) ( ) ¯ ( )ij ij
e

ij ij
r

(2)

The history of t( )ij
r is the change in the residual stress within the

cycle and satisfies = t(0) ( )ij
r

ij
r , so that the stresses and strain rates

will become asymptotic to a cyclic state. For the shakedown analysis,
=(0) 0ij

r must be achieved, therefore ratchetting response of the
structure will not occur with the zero plastic strain accumulation during
the cycles.

The shakedown limit analysis considers a global minimization
process to evaluate the īj imposed by the combined cyclic and steady
loads. The shakedown condition and the global minimization process of
the energy based on the Koiter’s theorem [31] are integrated, giving a
minimization function in an incremental form as Eq. (3),

=
=

I t dV( , ) { ( ) } 0ij SD
UB

V
n

N

ij
n

ij
n

SD
UB

ij n ij
n

1 (3)

where t( )ij n is the augmented elastic stress solution with the constant
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residual stress at a sequence of time tn; ij is the strain increment oc-
curring at time tn; n increases from 1 to N during the cycle; SD

UB is a
shakedown upper bound multiplier.

By transforming the Eq. (3) to Eq. (4), the SD
UB can be calculated

from

=
dtdV

dtdV

¯ ( )
( )SD

UB
V t

y ij
V t

ij ij

0 0

0 0 (4)

where y is the yield stress; ij is the enhanced elastic stress solution; ij
is a kinematically admissible strain rate; ¯ is the effective strain rate

=¯ ij ij
2
3 .

The upper bound multiplier is updated by the iterative process till
converging to the least upper bound limit, satisfying SD

UB
SD, where

SD is the exact shakedown limit. The shakedown lower bound multi-
plier SD

LB is calculated based on Melan’s Theorem [32]. By checking the
t( )ij

r within the computation process of the upper bound multiplier, the
iterative process continues to calculate SD

LB until where the modified
elastic solution at each integration point does not violate the yield
condition of the material, satisfying SD

LB
SD, SD

LB can be expressed by
Eq. (5).

+f t( ( ) ¯ ) 0SD
LB

ij ij (5)

2.2. Numerical procedures for cyclic creep and plastic analysis

The eDSCA procedure calculates the cyclic stress history at the
steady state in associated with residual stresses accumulated by in-
elastic strains either plastic or creep during the loading cycle. The
eDSCA utilise a similar minimization procedure with Eq. (3) which has
an assumption that plastic strain only occurs at time tn, where N (from
n= 1 to N) denotes total number of loading instances. The minimiza-
tion function of the eDSCA in an incremental form can be given by Eq.
(6).

= +I t t dV( ) { [ ( ) ( )] } 0n
ij
n

V ij
n

ij
n

ij n ij
r

n ij
n

(6)

By an iterative process, the strain increment ij
n can be calculated

by the minimization process until the requested a total number of cycles
M. The number of load instances N is performed as sub-cycles within
each cycle m, where m (from m= 1 to M). Hence, the accumulated
residual stress for nth load instance at mth cycle of iterations can be
expressed by Eq. (7).

= +
= = =

t t t( ) ( ) ( )ij
r

n m
i

m

n

N

ij
r

n i
i

n

ij
r

i m
1

1

1 1 (7)

For examples, if the cycles m and m+ 1 are only considered, the
iterative shear modulus µ t¯ ( )m n at a load instance tn can be defined by
Eq. (8), where t( )y n m denotes the von-Mises yield stress of the elastic-
perfectly plastic model, which is substituted to creep flow stress c̄ when
the tn involves a load instance of creep.

=
++µ t µ t
t

t t
¯ ( ) ¯ ( )

( )
¯ ( ( ) ( ) )m n m n

y n m

ij n ij
r

n m
1

(8)

Without consideration of a load instance of creep, the inelastic
strain increment +t( )ij n m 1 at the cycle m+ 1 can be calculated by Eq.
(9),

= + ++ + +t
µ t

t t t( ) 1
2 ¯ ( )

{ ( ) ( ) ( ) }ij n m
m n

ij n ij
r

n m ij
r

n m1 1 1 1
(9)

where t( )ij
r

n 1 is the accumulated previous residual stress before the
time tn and the notation (') refers to the deviatoric component.

For creep dwell, an effective creep strain ¯c is calculated using time
hardening power law known as Bailey-Norton law as given Eq. (10),

where A, n , m are temperature dependent material properties for
creep behaviour and t denote time for creep dwell.¯s and c̄ are the
start of creep stress and the creep flow stress at the end of creep dwell
respectively. The creep strain rate ¯c at the dwell time Δt is calculated
by Eq. (11).

=
+

+

+ +( )
A n t

m
¯ ( 1) ( ¯ ¯ )

¯ ¯ ( 1)
c

m
s c

c
n

s
n

1

1 1 (10)

= + + +m
n t

¯ ¯ ( 1) ¯
( 1)( ¯ ¯ )

( ¯ ¯ )c
c

c
n

s c
c

n
s

n1 1
(11)

Initially, the iterative process starts with estimated ¯s and c̄ values.
The Eqs. (10) and (11) compute new creep flow stress ¯c

f using Eq. (12),
so that the ¯c

f replace t¯ ( )y n m in Eq. (8) to carry out the linear matching
condition.

=
A t

¯ ¯
c
f

c

m
n
1

(12)

3. Problem description

3.1. Microstructure generation and boundary conditions

In order to carry out this numerical investigation, three-dimensional
multi-particle unit cells have been employed. The FE models used in
this paper have been taken from a previous study on the optimization of
the particle spatial distribution of MMCs [33]. The main finding of [33]
was the development of a Low-Fidelity Model-Based Optimization
(LFMBO) aiming at maximising the uniaxial Young’s modulus by
varying the particle spatial distribution. RVEs characterised by both
different number of particles (from 1 to 20) and particle volume frac-
tions (from 1% to 25%) have been investigated.

The optimization method relies upon the coupling between Matlab
Global Optimization Toolbox [34], Python [35] and Abaqus FEA [36]
as summarised in Fig. 1. The optimization starts with a repaired Latin
Hypercube design of experiment [37] and the most promising candi-
dates are selected to constitute the population of first generation (set of
green boxes in Fig. 1). Then, the optimisation loop starts (set of red
boxes in Fig. 1). The objective and the constraints violation are com-
puted for each candidate and, in light of these, a fitness value is as-
signed. Next, the candidates are ranked and the most promising are
selected and used by the Genetic Algorithms operators, namely elitism,
crossover and mutation [38], to generate the population of the next
generation.

Afterwards, with a probability of 5%, a Monotonic Basin Hopping
(MBH) [39] based optimization is performed starting from the current
best candidate.

The algorithm’s control parameters and the stopping criteria are not
fixed but rather change in accordance of the progress of the optimisa-
tion as described in [33].

The optimization process continues restarting the loop from the
proposed next population until the stopping criteria are met. Once the
optimization is reputed terminated, the uniaxial Young’s modulus re-
sulting from the optimum particle spatial distribution found is com-
puted through a high-fidelity procedure. This is composed by coupling
different software modules, i.e., Matlab Objective function Code and a
set of Python scripts for Abaqus FEA which is comprised of RVE gen-
erator, PBC adaptive code, pre-processing code and homogenization
code (set of blue boxes in Fig. 1). The objective function works as
wrapper function to interface GA to the RVE Generator code. The latter
generates the FE models according to the optimization variables while
the pre-processing code automatically assigns the materials properties,
generates the mesh and runs the PBC code. This assigns the periodic
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boundary conditions [40] according to the Eqs. (13)–(15), to all the
relative node pairs on the boundary faces i.e. inner face nodes, inner
edge nodes and corner nodes as depicted in Fig. 2. Into the aforemen-
tioned equations, ui is the nodal variable at a specific node within a
node group related to the degree of freedom i while ui

D1, ui
D2 , and ui

D3

are the perturbation carried out on the dummy nodes D1 D2 and D3 and
L is the length of the RVE’s edge. The perturbations imposed are u 0i

D1

and = =u u 0i
D

i
D32 . Finally, the FE analysis is performed and from the

generated ODB file the homogenised uniaxial Young’ modulus is com-
puted. Hence, the outcome of the research is a set of RVEs coming from
the optimization process for all the investigated number of particles and
fraction volumes.

These arrays have been used for the simulation model setup of the
current study because they allow to investigate the effect of particle
spatial distribution as well as particle volume fraction and particle
inter-spacing due to the variety of arrangements that the optimiser has
found.

+ =
+ =
+ =

=
< <
< <
< <

Group
u y z u L y z u
u x z u x L z u
u x y u x y L u

i
x R x L
y R x L
z R x L

1
(0, , ) ( , , ) 0
( , 0, ) ( , , ) 0
( , , 0) ( , , ) 0

1, 2, 3
| 0
| 0
| 0

i i
D

i i
D

i i
D

1

2

3

1

2

3

(13)
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D
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1
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3
3
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3
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(14)

Fig. 1. Low fidelity model-based optimization flow chart.

Fig. 2. Groups of nodes on the boundary faces of the RVEs a) inner face nodes, b) inner edge nodes, c) corner nodes.
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3.2. Simulation model setup

Among the optimized arrays of [33] , we have considered three
fraction volumes of the reinforcement hereinafter referred to as Vf, i.e.
Vf = 10%, Vf = 14%, Vf = 25%, and five particle distributions with 2,
4, 6, 8, and 10 number of particles hereinafter referred to as Npart. Three
of the FE models employed are shown in Fig. 3 and a typical RVE is
meshed with Abaqus C3D10 tetrahedral and is comprised of roughly
60,000 elements which is the best compromise, found by a preliminary
mesh convergence study [33,43], in terms of accuracy and computa-
tional time. The effect of particle spatial distribution, number of par-
ticles, and particle volume fractions on the shakedown behaviour has
been investigated by superimposing a tensile mechanical load t( )p
along the× direction on a cyclic thermal load t( ) with a dwell time
Δt = 0 (Fig. 4-b). The shakedown response has been the starting point
for the investigation of the creep-fatigue interaction response where
different dwell times have been considered i.e. Δt = 1 h, 10 h, and
100 h. When a dwell time is introduced within the thermal load history,
different mechanisms can arise depending upon the loading condition
applied and the state of stress at the matrix-reinforcement interface
[30]. Indeed as reported in [24] within the shakedown boundary the

structure can exhibit either shakedown or creep enhanced plasticity.
The latter can lead to two different scenarios which are closed loop or
creep-ratchetting. Instead, beyond the shakedown boundary, creep-
ratchetting is expected in most cases, which is a dangerous mechanism
that has to be avoided.

Fig. 4 shows a typical RVE with the mechanical load applied on the
dummy node D1 and the thermal load applied by Abaqus temperature
field throughout its region. The former load is constant in time while
the latter varies in time as shown in Fig. 4-b.

Constituent material properties were chosen to correspond to elastic
SiC particles perfectly bonded to a Ti-6242 matrix that follow the data
reported in Table 1. Due to the high temperature, it is relevant to
evaluate the creep strain only for the titanium matrix. The creep con-
stitutive equation adopted is the Norton law that represents the steady-
state creep rate of the material within the secondary creep stage:

= A Q RT· ·exp( / )c n (16)

where c denotes creep strain rate, n is the stress exponent, A is a
constant, Q is the activation energy, R is the universal constant of gases,
and T is the absolute temperature [K].

Creep parameters are taken from the tensile creep test data of Ti-
6Al-4V material in which test performed at 200 MPa and 600 °C [41].
Ti-6Al-4V material shows similar creep behaviour with Ti-6242. The
creep properties are summarized in Table 2.

4. Results and discussion

4.1. Shakedown behaviour and load bearing capacity of a SiC-Ti6242
PRTMCs at 500 °C

Shakedown boundaries, reverse plasticity limits rp as well as limit

Fig. 3. Typical FE models with six particles and a) Vf = 10%, b) Vf = 14%, c) Vf = 25%.

Fig. 4. a) RVE with tensile mechanical load σp(t) and cyclic thermal load Δθ(t), b) load history applied.
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loads pl are reported in the form of interaction diagram for all the RVEs
investigated. rp is the maximum of the thermal load range related
to a specific RVE’s configuration characterized by Npart and Vf, beyond
which reverse plasticity occurs while pl is the maximum load for a
specific RVE’s configuration that the structure can safely carry [19]. For
the shakedown limit boundaries the axes are expressed in non-dimen-
sional variables / 0 and /p p0 where = °500 C0 is the reference
thermal load range whilst = MPa350p0 is the matrix yield stress. The
three loads points P1 ( = 0p and = 0.8 0), P2 ( = 0.15p p0 and

= 0.8 0), P3 ( = 0.3p p0 and = 0.8 0) are examined for different
dwell times in order to investigate the creep-cyclic plasticity behaviour
within the shakedown zone for all particle arrangements studied.

4.1.1. Effect of number of particles, particle fraction volume and particle
arrangement on the shakedown boundaries

Shakedown boundaries and the variation of the critical design limits
i.e shakedown limit rp and limit load pl for different Npart i.e. 2, 4, 6,
8, 10 and different Vf i.e. 10%, 14%, and 25%, are plotted in Fig. 5 and
Fig. 7 respectively.

Along with the variables Npart and Vf, the particle spatial distribu-
tion influences both the shakedown behaviour and the critical design
limits. Indeed, by comparing the 5 arrays for the three fraction volumes
investigated there is not a clear trend as for Vf = 10% (Fig. 5-a) the
array with Npart = 2 has the highest rp whilst for Vf = 14% (Fig. 5-b)
and Vf = 25% (Fig. 5-c) the highest rp is computed for Npart = 4 and
Npart = 6 respectively. A different scenario is seen for the limit load
where for Vf = 10% and Vf = 25% the highest pl is computed for
Npart = 10 whilst for Vf = 14% the highest pl is computed for Npart = 8.
This explains the effect of the particle spatial distribution on the sha-
kedown behaviour which, as reported in other studies [33,42,43] must
be taken into account as it strongly affects the elastoplastic behaviour of
composites. Also, as can be seen from Fig. 6 the particle spatial dis-
tribution influences the thermo-elastic stress which directly affects the
reverse plasticity limit rp. Indeed, by comparing the three different
particle arrangements for Npart = 2 (upper row) the highest thermo-
elastic stress computed for Vf = 14% leads to a lower rp compared to
Vf = 10% and Vf = 25%. Same scenario can be seen for Npart = 6 where
the highest rp is computed for Vf = 25% whereby the thermo-elastic
stress computed is lower than Vf = 10% and Vf = 14% (Fig. 7-a).

With regards to the limit load pl, reported in Fig. 7-b, the variation
for different particles arrangements is mainly influenced by the particle
fraction volume as for a higher volume of the reinforcement the matrix
carries a lower percentage of the load applied. However the particle

Table 1
Mechanical properties at 500 °C.

SiC Ti-6242

E [GPa] 380 95
ν 0.19 0.32
α [°C−1] 4.1e−6 8.1e−6

σy [MPa] 3450 350

Table 2
Creep parameters.

Material A MPa h[ ]n 1 n Q kJ mol[ · ]1 R J mol K[ · · ]1 1

Ti-6Al-4V 4432.45 4.6 267 8.314

Fig. 5. Shakedown boundaries for different particle arrangements with Npart 2, 4, 6, 8, and 10 and a) Vf = 10%, b) Vf = 14%, c) Vf = 25%.
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Fig. 6. Thermo-elastic stress under Δθ0 = 500 °C for the three different particle arrangements with Npart = 2 (upper row) and with Npart = 6 (lower row) for the three
different fraction volumes investigated.

Fig. 7. Variation of the critical design limits for different particle arrangements with Npart (2, 4, 6, 8, 10) and Vf (10%, 14%, 25%) a) reverse plasticity limit, b) limit
load.

Fig. 8. Mises stress distribution under the limit load pl for four different arrangements with Npart = 6 and Npart = 10 for Vf = 14% and Vf = 25%.
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spatial distribution can influence the particle load carrying capacity
[44,45] as shown for Npart = 6 in Fig. 7-b. Indeed, by comparing
Npart = 6 with Npart = 10 for the three fraction volumes investigated, it
can be seen that for Npart = 6 the highest limit load is computed for
Vf = 14% and the lowest limit load for Vf = 25% while for Npart = 10
the highest limit load is computed for Vf = 25% and the lowest limit
load for Vf = 14%. This means that the particle distribution of the ar-
rangement Npart = 6 with Vf = 14% leads to a higher limit load than
the arrangement Npart = 6 with Vf = 25%. Hence the particle spatial
distribution predominates over the fraction volume as under the limit
load the particles of the arrangement Npart = 6 with Vf = 14% carries a
higher load than the particles of the arrangement Npart = 6 with
Vf = 25% (Fig. 8). A different scenario is seen in Fig. 8 for Npart = 10
where the fraction volume of the reinforcement predominates over the
particle spatial distribution.

4.1.2. Variation of the critical design limits for a fixed particle arrangement
Fig. 9 shows the variation of rp and pl with Vf for two fixed

particle arrangements and two different number of particles i.e. the
arrangements for Vf = 25% with Npart = 6 and Npart = 10. The results
show that the reverse plasticity limit decreases with Vf (Fig. 9-a) while
the limit load increases with Vf (Fig. 9-b). These expected findings
clarify some aspect already discussed in the previous subsection. In-
deed, for the reverse plasticity limit, by increasing the fraction volume
for a fixed arrangement the thermo-elastic stress at the particle/matrix
interface is expected to increase leading to a lower rp. Instead, the
limit load increases with Vf for a fixed arrangement due to the cap-
ability of the reinforcement to carry a higher percentage of the load
applied. It is also worth noting that the array with the lower number of
particles experiences a higher reverse plasticity limit and a lower limit
load throughout the fraction volume range investigated.

The importance of the shakedown boundaries in the prediction of
the key parameters for the creep-fatigue interaction behaviour will be
clarified in the next sections. Even though the three load points in-
vestigated i.e. P1, P2, and P3, are within the shakedown zone as shown
in Fig. 5 the value of the creep strain computed as well as the me-
chanism experienced by the structure will be affected by the value of
the reverse plasticity limit.

4.2. Creep-cyclic plasticity behaviour of SiC-Ti6242 PRTMCs

Cyclic creep behaviours of the PRTMCs subjected to different cyclic
load points which are P1 ( = 0p and = 0.8 0), P2 ( = 0.15p p0 and

= 0.8 0), P3 ( = 0.3p p0 and = 0.8 0) are analysed by means of the
LMM eDSCA method. Eq. (16) is used to obtain the creep parameter for

the thermal loading = 0.8 0. A full incremental cyclic analysis is
performed to verify the results analysed from the LMM eDSCA using
Abaqus step-by-step (SBS) method for an RVE with Npart = 6 and
Vf = 10% subjected to the load point P2.

Fig. 10 presents resultant creep strain increment in the steady state
cycle analysed from the SBS (Fig. 10-a) and the LMM eDSCA (Fig. 10-b),
where, the legends in Fig. 10, SDV6 denotes creep strain increment
computed by the LMM eDSCA, CEMAG indicates creep strain magni-
tude analysed by SBS method. The creep strain computed by the LMM
eDSCA is in line with the result by the SBS. It is worth noting that the
LMM eDCSA produces the reliable results within short computational
time less than 10% of the SBS. Based on the efficient performance, the
LMM eDSCA has been selected to analyse the creep-cyclic plasticity
response of the PRTMCs rather than the SBS method.

4.2.1. Effect of particle spatial distribution on the creep-cyclic plasticity
response

The fifteen different RVEs subjected to a cyclic load point P2 in
Fig. 5 are analysed for a dwell time of 10 h. Creep strain and ratchetting
strain calculated for the most critical location where each RVE model
has the highest creep strain accumulated. The results are summarized
with respect to a different fraction volume in Table 3. Stress–strain
hysteresis loops for notable RVE models that have significant creep
strain or ratchetting strain are presented in Fig. 11.

Investigation results in [24] demonstrate that when a structure is
subjected to a cyclic loading point under shakedown boundary, struc-
tural responses in the steady state are likely to appear either no plastic
strain increment or the creep enhanced plasticity. In this work, how-
ever, despite the loading level P2 located under the shakedown
boundary for all RVEs, it is observed that all RVEs experience creep
ratchetting by the cyclically enhanced creep. As mentioned, without
creep effects, cyclic loading under both elastic and global shakedown
limits do not induce any ratchetting mechanism. However, with creep,
the structural response can be the creep ratchetting due to a variety of
factors such as geometry, creep constant, other material properties.
Hence the creep-cyclic plasticity behaviours of a structure should not be
predefined by the cyclic loading level but should be thoroughly in-
vestigated. From the results, we have seen no clear correlations be-
tween either creep strain or ratchetting strain and the number of par-
ticles for a fixed volume fraction. Therefore, the results demonstrate
that spatial particle distributions have significant effects on high tem-
perature damage tolerance.

From the results we have seen no clear correlations of either creep
strain or ratchetting strain with the number of particles for a fixed
fraction volume. It is worth noting that, as explained in Section 4.1.1,

Fig. 9. a) Variation of the reverse plasticity limit with Vf for two fixed arrangements; b) Variation of the limit load with Vf for two fixed arrangements.
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the particle spatial distribution of the PRTMCs used in the present work
has mainly influence on the elastoplastic behaviour of composite ma-
terials. Therefore, it can be understood that each RVE exhibits in-
dependent creep strain and ratchetting strain increments in the steady
state.

Some remarkable results are presented in Fig. 11. The RVE for
Npart = 10 with Vf = 10% and another RVE for Npart = 2 with
Vf = 25% show the largest creep deformation. In particular, the latter
RVE develops significant total strain range over 2% within a cycle.
Referring to the cyclic loading P2 of the two concerning RVEs in Fig. 5,
their loading levels are quite close to the reverse plasticity limit rp.
On the contrary, RVE for Npart = 6 with Vf = 25% shows the highest

creep endurance under the same loading P2, where the level is the
furthest down from its reverse plasticity limit. Based on these ob-
servations, we can see that the cyclic load points closer to reverse
plasticity limit may cause significant creep deformation.

4.2.2. Effect of varying dwell time and tensile load level on the creep-cyclic
plasticity response

The parametric studies are carried out for an RVE model which has
Npart = 6 with Vf = 10% in order to understand the effects of dwell
time and a tensile load level on the creep-cyclic plasticity behaviour of
the PRTMCs. The cyclic creep and plastic analyses are performed for the
RVE models which are subjected to each cyclic load point P1, P2, and
P3 using the LMM eDSCA for three independent dwell of 1 h, 10 h, and
100 h. Fig. 12 presents the hysteresis loops constructed for the most
critical element of each case. Creep strain and ratchetting strain ana-
lysed are summarised in Table 4.

For the non-tensile loading applied (Fig. 12-a), the dwell stress re-
laxation affects the unloading plasticity but closed hysteresis loops
appear for all the dwell times. As dwell increases, creep deformation
increases, but the magnitude of the end of dwell stress decreases. Dif-
ferent from other thermal stress induced by non-isothermal loading
over a structure, the RVE has the thermal stress caused by a difference
of thermal expansion coefficients between the titanium phase and the
silicon carbide in the isothermal condition. Therefore, no back stress
effects exist during the relaxation; the pure thermal stress will be close
to zero over a long-term dwell.

For the tensile loads applied, Fig. 12-b) and c), creep ratchetting
responses occur at every dwell time due to the cyclically enhanced

Fig. 10. Creep strain contours for the micro scaled SiC-Ti6242 PRTMCs subjected to a cyclic load point P2 for dwell time of 10 h; analysed by a) Abaqus step-by-step
method and b) the LMM eDSCA.

Table 3
Creep strain and ratchetting strain from the cyclic creep and plastic analyses of
all the RVE models.

No. of
particles

Fraction volume

10% 14% 25%

Creep
strain
(%)

Ratchetting
strain (%)

Creep
strain
(%)

Ratchetting
strain (%)

Creep
strain
(%)

Ratchetting
strain (%)

2 0.57 0.28 0.55 0.25 1.92 2.00
4 0.52 0.30 0.46 0.23 0.38 0.16
6 0.62 0.18 0.70 0.43 0.15 0.07
8 0.51 0.24 0.69 0.22 0.38 0.10
10 1.65 0.32 0.42 0.10 0.51 0.09

Fig. 11. Steady state hysteresis loops of the RVE models subject to cyclic loading P2 for dwell time 10 h; a) Npart = 10 with Vf = 10%, b) Npart = 2 with Vf = 25%,
and c) Npart = 6 with Vf = 25%.
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creep. In overall, creep deformations significantly increase as tensile
load level increases despite the same dwell. Interesting points to be
noted from are that the RVE models subjected to the larger tensile load
level P3 have the dwell relaxation started and ended at higher stress
level than the others P1 and P2. When the tensile load and the thermal
load are applied to the RVE models, primary tensile stresses and sec-
ondary compressive stresses develop respectively. Critical stresses
combined between the primary and secondary stresses in the RVE
models are likely to occur at locations where the metal matrix encloses
the particles as shown in Fig. 11.

The maximum principal stress of the RVE models subjected to the
three different loadings P1, P2, and P3 is investigated in order to find a
dominant stress component of the von-Mises stress shown in Fig. 12, the
maximum principal stress component of the RVE model subjected to the
three different loadings P1, P2, and P3 is investigated. Fig. 13 exhibits
contours of the maximum principal stress distributions for P1 and P2.
The locations where the critical stress imposed have the tensile max-
imum principal stress component, whereas the rest of the metallic phase
in the RVE model has the compressive stress component. As the tensile

load increases, the start and the end dwell stress level increase, while
the thermal stress being in relaxations for the same dwell. From Table 4,
we can presume that creep strain may be accumulated over 1% for a
dwell of an hour within a cycle, if the tensile load level exceeds P3.
Therefore, creep damage should be carefully assessed when the
PRTMCs is subjected to tensile loading condition along with the cyclic
thermal load.

4.2.3. Effect of fraction volumes on the creep-cyclic plasticity response for a
fixed particle arrangement

As demonstrated in Section 4.2.1, the optimised particle distribu-
tions in the RVE models do not direct benefits to creep endurance.
However, it is worth investigating what influences of the variations of
the particle arrangement giving to the creep-cyclic plasticity behaviour
of the PRTMCs. For the investigations, we have performed the cyclic
creep and plastic analysis for RVE models that have a fixed particle
distribution concerning a number of particles.

Two RVE models which have Npart = 6 and Npart = 10 with
Vf = 25% each are selected as a reference particle arrangement. For
each number of particles, four RVE models are created for different
volume fractions of 10%, 14%, 18%, and 22% with a fixed arrange-
ment. The cyclic creep and plastic analysis is performed for the eight
RVE models subjected to the cyclic load point P2 for a dwell time of
10 h. Fig. 14 presents stress–strain hysteresis loops for the most critical
element of each RVE model in the steady-state. Table 5 reports creep
and ratchetting strain accumulated for each RVE model.

In overall, results from the both number of particles present that the
cyclically enhanced creep leads to creep ratchetting response without
loading plasticity. As a common trend in Fig. 14, both Npart = 6 and
Npart = 10 models have an increase in the stress range as volume
fraction increases. An interesting point to be noted is that RVE models
with volume fractions that do not induce unloading plasticity have
approximately the same creep strain of 0.1%.

Fig. 12. Steady state hysteresis loops of a RVE model that has Npart = 6 with Vf = 10% for variations of dwell 1 h, 10 h, and 100 h at cyclic load point; a) P1, b) P2,
and c) P3.

Table 4
Creep and ratchetting strain from the creep behaviour analyses of an array of 6
particles with a fraction volume of 10%.

Cyclic load point Dwell time Creep strain (%) Ratchetting strain (%)

P1 1 h 0.39 0.00
10 h 0.50 0.00
100 h 0.56 0.00

P2 1 h 0.41 0.04
10 h 0.62 0.18
100 h 0.70 0.22

P3 1 h 0.93 0.80
10 h 3.55 3.50
100 h 9.84 9.25

Fig. 13. Maximum principal stress distributions [MPa] of a RVE model Npart = 6 with Vf = 10% for dwell time 10 h: a) σp = 0 and b) σp = 0.15 σp0.
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Conversely, the creep strain increases once unloading plasticity
appeared, and it keeps on increasing as the unloading plastic strain
increases. By increasing the volume fraction within a fixed particle
arrangement, a stress concentration occurs around the reinforcement
due to the reduced amount of the titanium matrix. In additions, when
the RVE model has the unloading plasticity accumulated, the residual
stress from the unloading instance affects the start dwell stress to in-
crease; eventually, it leads to an increase in creep strain accumulation.
In the sense of the above investigations, Npart = 10 models may have
less stress concentration around the reinforcement than Npart = 6
models, which results in the unloading plasticity taking place early. In
the meantime, the ratchetting strains accumulated for both numbers of
particles do not have any influences from the variation of volume
fraction.

5. Conclusions

Shakedown and limit state analysis of PRTMCs subjected to thermo-
mechanical loading are analysed by means of the LMM. Fifteen RVEs
have been used which come from a previous study on the optimization
of the elastic behaviour of particle reinforced composites by varying the
particle spatial distribution. On the basis of the current investigation of
the effect of particle spatial distribution, number of particles Npart and
particle fraction volume Vf on the two critical design limits i.e. reverse
plasticity limit rp and limit load pl it has been observed that:

• For a fixed particle arrangement, the reverse plasticity limit rp

decreases with Vf while the limit load pl increases with Vf. Also, the
array with a lower number of particles has a higher reverse plasti-
city and a lower limit load throughout the fraction volume range
investigated.

• Instead, by comparing different arrays with the same Npart but dif-
ferent Vf the particle spatial distribution can influence the stress at
the matrix/particle interface leading to a higher value of rp for the
array with the highest Vf and a higher value of pl for the array with
the lowest Vf. Likewise by comparing different arrays with the same
Vf but different Npart the particle spatial distribution can lead to a
higher value of rp for the array with the highest Npart and a higher
value of pl for the array with the lowest Npart.

With regards to the creep-cyclic plasticity behaviours of the
PRTMCs, the fifteen RVE models have been analysed by the LMM
eDSCA. Key observations from the results are summarized as follows:

• All the RVE models analysed show creep ratchetting responses due
to cyclically enhanced creep, even though a cyclic load applied is
under the strict shakedown boundary. Despite the same number of
particles, variations of volume fractions have no direct influences on
creep or ratchetting endurances due to non-uniform spatial particle
distribution. Therefore, the numerical results demonstrate again
that tailoring of the reinforcement arrangement affects the high
temperature damage tolerance substantially. Nevertheless, the non-
uniform spatial particle distribution, a cyclic loading closer to the
reverse plasticity limit causes significant creep deformation.
Moreover, tensile load level has significant effects on both creep
strain and ratchetting strain increment as a dwell increase.

• For RVE models with a fixed particle arrangement, variations of
volume fractions have effects on a magnitude of a stress range
within a cycle, which enhance unloading plasticity as volume frac-
tions increase. On the other hand, a large number of particles aug-
ment the total strain range for the same volume fraction. Therefore,
an RVE model that has a smaller volume fraction exhibits out-
standing creep endurance.
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Fig. 14. Steady state hysteresis loops of RVE models that have a fixed particle arrangement subjected to cyclic loading P2 and dwell time of 10 h with variations of
fraction volumes: a) Npart = 6 and b) Npart = 10.

Table 5
Creep and ratchetting strains for Npart = 6 and Npart = 10 of RVE models that
have a fixed particle arrangement subjected to cyclic loading P2 and dwell time
of 10 h with variations of fraction volumes.

Number of
Particle

Fraction volume
(%)

Creep strain
(%)

Ratchetting strain (%)

6 10 0.10 0.10
14 0.10 0.10
18 0.09 0.10
22 0.09 0.09
25 0.15 0.08

10 10 0.11 0.11
14 0.13 0.13
18 0.20 0.13
22 0.41 0.12
25 0.53 0.12
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Appendix. Flowchart of the LMM eDSCA
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